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Interferometric test for N-wave flow 

By D. H. STEININGER and F. D. BENNETT 
Ballistic Research Laboratories, Aberdeen Proeling Ground, Mavyland 

(Received 8 December 1956) 

SUMMARY 
&An analytical expression for the fringe shift in the N-wave 

is derived from the improved linearized theory for a slender 
supersonic projectile. From this expression an approximate 
mapping function is found which gives a simple test for N-wave 
flow. The validity of the fringe-shift expression is quantitatively 
confirmed by measuring an interferogram of the flow around a 
sphere. N-wave flow is shown to exist around a small sphere 
for Y greater than about 70 diameters. Measurements of the 
shock waves from a sphere and a cone-cylinder show that the 
shocks assume their asymptotic positions for Y > 14 diameters 
for the sphere, and Y > 7 diameters for the cone-cylinder. 

1. INTRODUCTION 
1 . 1 .  Interferometric method of analysis 

Interferometric investigation of the fluid flow around a supersonic 
projectile in free flight gives a quantitative record of the density over the 
entire flow field (Ladenburg & Bershader 1954). Experience shows that 
the reduction of the fringe shift to density values for an axisymmetric flow 
is a cumbersome and time-consuming process because, in general, the 
relationship between fringe shift and density at a particular point is not 
simple. It is useful, therefore, to find flow regions for which some intrinsic 
property can be determined directly from the measurements of fringe 
shift. 

An interferogram of a supersonic cone-cylinder shows two regions 
which have conspicuous symmetry of fringe shape, suggesting the possibility 
of a simplified analysis. The first of these is the region near the cone in 
which the fringes are nearly straight and parallel (Giese, Bennett & Bergdolt 
1950; Giese & Bergdolt 1953 ; Bergdolt 1953 ; Cole, Solomon & Willmarth 
1953). The flow here is characterized by the fact that the physical variables 
are constant along straight lines through the vertex. Assumption of this 
flow regularity leads to a method of plotting fringe shift which verifies in 
many instances the approximation of real flows to idealized conical flow. 

The second of these regions lies between the front and rear shock waves 
at rather large distances from the projectile axis. Here the fringes have a 
gentle curvature and a similarity of shape which change only slowly as the 
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distance from the axis increases. This similarity suggests an underlying 
simplicity of the fundamental flow field. Experiments by DuMond et al. 
(1946) showed that at large radial distances, the pressure profile parallel 
to the axis consists of a sudden rise at the front shock, followed by a linear 
decrease to a value below that for the free stream, and then a sudden rise 
at the rear shock. The curve so generated has the shape of a capital N ;  
hence is given the name ‘ N-wave ’. 
1.2. Scope of the paper 

Using the results obtained by Whitham (1952) in his improved linearized 
theory for slender supersonic projectiles, we derive here an analytical 
expression for the fringe shift in the N-wave region. We investigate this 
function and find a mapping property which gives a simple criterion for 
comparing theoretical and measured data. 

Interferograms taken of the flow around spheres and slender cone- 
cylinders are measured, and observed fringe shift is compared with the 
theory. To justify the use of spheres, we discuss the validity of comparing 
the distant flow around blunt bodies with values predicted by slender-body 
theory. Figure 1 (plate 1) shows a general view of the flow about a sphere. 

D. H. Steininger and F. D. Bennett 

2. THEORY 
2.1. The fringe-shift integrat 

If (x, r )  are the cylindrical polar coordinates of the axisymmetric dis- 
turbance, and the front tip of the projectile is at the origin with the line 
of flight parallel to the x-axis, then the fringe shift 6(x, r )  is related (Bennett 
et aZ. 1952) to the density p at ( x , r )  by 

Figure 2. Path of integration of the fringe-shift integral for a supersonic projectile. 
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where K is the Gladstone-Dale constant, h the wavelength of the light in 
vacuum, po the free-stream density, r N  the outer radius of the disturbance 
at x, and t is the variable of integration in the r direction. As in figure 2, 
the fringe shift at (x, r )  is determined by an integration of the density values 
found along the line from r to r N .  

An inversion of (2.1) allows the reduction of fringe-shift measurements 
to density throughout the flow field. Such a reduction does not interest us 
here ; for our purpose is to obtain in the N-wave a functional description 
of (p - po) and from it derive an expression for the fringe shift in that region. 

2.2. Improved linearixed theory 
The linearized theory of Karman & Moore (1932) for a slender supersonic 

projectile gives solutions which are good first approximations to the actual 
conditions at the surface of the projectile, but which fail as the distance r 
increases. This failure arises from the fact that the Mach lines are parabolae 
in a second approximation, while the linear approximations to them are 
straight lines; and although a curved Mach line intersects a straight one 
at the surface of the body, the curves diverge with increasing r. The improved 
theory offered by Whitham (1952) makes the linear solutions uniformly 
valid over the entire field by associating them with the more exact Mach 
lines. This improved theory is still based upon a first approximation to 
the potential flow equations, and, like linear theory, neglects terms of order 
u2, v2, where u and v are the small perturbation velocities in the x and r 
directions. Nevertheless, it has the additional advantage over linear theory 
that the existence and position of the shock waves are predicted. 

With this background in mind, we now discuss that part of the Whitham 
theory necessary to our development. Equations which appear in Whitham’s 
paper are identified by the notation Wh. 

At great distances from its axis, the supersonic 
projectile produces two shock waves, both extending to infinity. The 
equations for the shock waves at large r are, from Wh(43),  

1.  The shock waves. 

x = ctr +yo c Ar1i4, (2.2) 
where the upper sign represents the front shock and the lower sign the rear 
shock, ct2 = M 2  - 1, and A and yo are constants related to body shape. 
The straight line x = ar +yo and the lines given by (2.2) intersect the x-axis 
at yo. By inspection of (2.2) one sees that the front shock wave lies ahead, 
and the rear shock behind the straight line by the amount Ar1I4. Thus, 
the horizontal distance between the two shocks is 2Ar1i4. This property 
will be used later to determine A experimentally. The fact that the locus 
of the mid-points of the horizontal distances is the line x = ctr+y, will 
enable us to determine a when the projectile axis is known, or the projectile 
axis when a is known. 

2. The pressure distribution. When r is large, the pressure distribution 
between the shock waves is by Wh(71), 

( p  -po)/po = yM2(2a)-1/2(kr)-l(ctr - x +yo) (2.3 ) 
P 2  
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where k = 2-li2(y+ l ) M * c ~ ~ ’ ~ ,  p is the disturbed and p ,  the free-stream 
pressure. Notice that along a trace of constant r the pressure differencep -p, 
decreases linearly with x from a positive value at the front shock to an equal 
negative value at the rear shock. Midway between the shocks on the 
straight characteristic, we have p = p,. The pressure slope, yM2(kr)-l(2a)-lI2 
depends only on the flow constants and the distance from the axis, and not 
upon the shape of the body producing the disturbance. In  addition to 
this expression for the N-wave distribution, which only exists in the distant 
regions, Whitham derives a more general equation which gives the pressure 
distribution at any distance from the projectile axis. Figure 3 shows a 
typical pressure signature along a horizontal trace for three distances from 
the axis :-near to the body and before the rear shock is formed, an intermediate 
position with both shocks, and the final wave. 

Figure 3. Typical pressure signatures along horizontal traces : top curve, near the 
body; middle curve, at an intermediate distance; bottom curve, in the 
N-wave region. 

2.3. Density distribution in the N-wave 

We now relate pressure and density in the N-wave. Despite the seeming 
simplicity of this programme, some care must be exercised to assure an 
approximation consistent with that of linearized theory. 

I t  can be shown (Heaslet 8z Lomax 1954) that the entropy may be 
considered constant across a shock wave if third and higher-order powers 
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of the perturbation velocities are neglected. We neglect second and higher- 
powers and may, therefore, assume that the flow behind the shock is 
isentropic. The adiabatic gas law applies ; thus 

PIP0 = (2.4) 

Expanding (2.4) in Taylor series around p = p,, we get 

($’= l+;ry)+zy2(-pb)2 1 - Y  P - P o  +o ( P - P o  ) . 
I n  Wh(66), Whitham finds that 

so to the linear approximation 

and 

If we substitute (2.3) into (2.5), we find that 

p - po = po M2K-1(2u)-1/2~-1(ur - x +yo). (2.6) 

This is the density distribution between the shock waves in the N-wave 
region. Along a trace of constant r ,  the density profile of the N-wave has 
the same characteristic shape as the pressure curve. 

2.4. Fringe shift between the shock waves 

Combining (2.6) and (2.1), we obtain 

Here x is constant along the path of integration from r to rN. 
terms and integrating, we find 

Regrouping 

X 
Kp” M2(2U)W 

hk 
qs, 1.) = 

x { [ ($>” - 111” - (s--yn)log[F UP 
+ r$- l)’”]}, (2.8) 

where P~ is related to x by means of the front shock equation 

x = U P y  +yo - AT?. (2.9) 
Equations (2.8) and (2.9) predict the fringe shift between the shock waves. 

Let us examine the variation of 8 ( x , r )  along a trace r = const. as x 
increases from xx to .xs, which lie on the front and rear shocks respectively. 
-Also, xo lies on the line x - CIY = yo, halfway between xA,, and x, (see figure 4). 
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Let f(~) = (e2- 1)lI2, g(e)  = log[E+(E2- 1)lj2], and R = (x--yo)/ar, where 
E = rN/r. For a particular flow the magnitude and sign of 6 is determhed 
from (2.8) by the term in the curly brackets, i.e. by i f - R g ) .  

Figure 4. The region between the two shock waves. 

By comparison with the equation of the straight characteristic 

[x < 30 ,  

R = I /  if j x = x o ,  I: :1 [ X >  xo. 

Thus R increases monotonically with x from a value less than 1 at the front 
shock to a value greater than 1 at the rear shock. From the equation of the 
front shock wave, 

1 - (A/a)r314 < R < 1 + (A/a)rr314. 

The variation off(€) and Rg(E) with E is shown in figure 5 for R < 1. 
The curves have vertical tangents at E = 1 and intersect at no other point. 
(A proof of this fact appears in Appendix I.) When R > 1, they are related 
as in figure 6. In addition to their intersection and common vertical tangent 
at E = 1, they intersect at one other point, say E = eC (see Appendix I), 
where E,  increases as R increases. 

We can now examine the combination of functions { f - R g } .  As x 
increases, so do E, R, and ec (when R > 1 ). 

When x, < x < xo, R < 1, so f > Rg.  Therefore, 6 is positive in the 
forward portion of the N-wave. 

When x,, < x <xs, R > 1, a n d f z  Rg if E =( E ~ .  When x is just greater 
than x,,, E > eC, so 6 is positive. But it is possible that as x increases, 
E, increases faster than E. If it does, then the conditions E < eC can occur, 
and 6 will pass through zero to negative values near the rear shock wave. 
The proof that &,/ax > &/ax is too complicated to be attempted here. 
We resort to calculation to establish the behaviour of 6 in this region. 

> 
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Figure 5.  Variation of the functions f and Rg when R < 1. 
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Figure 6. Variation of the functions f and Rg when R > 1. 
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A calculation of 6 'us x along r = const. from (2.8), using representative 
values of A, yo and the flow constants, yields the curve in figure 7. The 
fringe shift does go to negative values near the rear shock wave. 

""T 

\ 
-1.01 

Figure 7. Variation of fringe shift along a horizontal trace, caIculated from (2.8). 

2.5. Fringe-shift mapping law 

Let us investigate the behaviour of the 6 vs x curve of figure 7 at 
several radial distances. Table 1 gives the calculated values of 6 along 
three horizontal traces. Preliminary calculations* of 6 vs x show that 6 
becomes zero about three-quarters of the way between x, and xs, no matter 
what the value of Y. This indicates that the ratio (x-xA,)/(xs-x,) has a 
significance which is independent of r ;  so in table 1, 6 is given for values of 

4 = (x-x,,,)/(xs-x,,,), Definition 1 (2.10) 

rather than for values of x. Theoretically, xs- x,,, = 2Ar1j4 by (2.2), and so 

4 = (x-XN)/2~r1/4. Definition 2 (2.11) 

Between the shock waves, 0 < 5 < 1. The variable 5 seems indeed to be 
independent of r in that all the curves of 6 ws E given in table 1 pass through 
zero and reach positive maxima for the same values of 5. However, the 
magnitude of 6 decreases as Y increases. 

Because of the inverse variation of 6 with r ,  it seemed possible that for 
any two traces the relation 6,r; = aZrg might hold for each value of f along 
the traces. When values of 6 and r were substituted in this equation, 
n turned out to be very close to &. For each trace, then, the values of S 
were multiplied by rl/*. A plot of 6r1's 'us E yields a curve which remains 
closely the same for all horizontal traces through the N-wave. Comparison 

* A  discussion of this investigation is being published in an Office of Ordnance 
Research Report on the Second Annual Conference of Ordnance Mathematicians, 
February' 1956. Inquiries should be addressed to Office of Ordnance Research, 
Box CM, Duke Station, Durham, North Carolina. 
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The 
The 

and 6 are dimensionless ; values of the coordinates are rendered 

of the last three columns of table 1 shows the agreement possible. 
last two columns agree to better than 1% for many of the entries. 
variables 
dimensionless by dividing them by the projectile diameter. 

r = 50 r = 100 

0 0 
0.676 0.618 
0-808 0.740 
0.812 0.742 
0.731 0.666 
0.585 0.534 
0,385 0.350 
0.145 0.130 

-0.138 -0.130 
-0.455 -0'422 
-0.807 -0.742 

5 
r .= 10 

0 
1.1204 
1 -339 9 
1.345 5 
1.212 7 
0.976 1 
0.654 2 
0.262 2 

____ 

-0'195 5 
-0'708 9 
-1.2743 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

I 

r = 10 

0 
0.840 2 
1.004 8 
1.009 0 
0.909 4 
0.732 0 
0.490 6 
0.1 96 6 

-0.146 6 
-0.513 6 
-0'955 6 

Y = 50 

0 
1.102 
1.318 
1.324 
1.192 
0.954 
0-628 
0.237 

-0.225 
- 0.742 
-1.316 

Y = 100 

0 
1.099 
1-316 
1.320 
1,184 
0.950 
0.622 
0.231 

-0.231 
- 0.750 
- 1 -320 

Table 1. Fringe shift calculated from equation (2.8); flow constants are A = 2, 
a = 2, = 2. 

We now show that the 8 ~ ~ 1 8  mapping law is contained implicitly in the 
exact N-wave fringe-shift equation (2.8), and can be revealed by making 

Referring to 2.4 and making use of the definitions given there, we can 
uitable approximations. 

write (2.8) as 

where C = ( 2 ~ ) ~ ' ~ K p ~  M2(Xk)-1, and f, g are functions only of E (= r&). 
Further, let ( A / u ) ~ - ~ / ~  = u, and observe that u is proportional to Whitham's 
approximate expression for the shock strength, Wh(44). Our task is now 
to find R, f and g as functions of u and 5. For R this is comparatively easy 
and leads to a general proof of the possibility for f and g. 

The geometric relationship between an external point (x, r )  and the 
corresponding points on the front shock wave (xzv, r )  and (x, rN)  is made 
clear schematically in figure 4. Selecting the minus sign in (2.2), we may 
write 

XA = uv+y,-Arl~~, (2.13 a) 

and x = urL,,+yO- (2.13 b) 

Substituting (2.13 a) into (2.11), the definition of E ,  we obtain 

6 = C Y { f - R g } ;  (2.12) 

5 = (x - uY + ~ ~ 1 / 4 ) / 2 ~ ~ 1 / 4 ,  

and solving this for (x-yo)/uY gives 

R = 1 - ~ + 2 ~ < .  (2.14) 
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Division of (2.13 b) by ur yields a relation between E ,  u and R as follows : 

F - ~ ~ 1 1 ~  - R = 0. (2.15) 

From 
(2.14) it follows that E is a function only of u and 5 ;  consequently, the 
same is true off and g. It  remains now to find suitable expressions for 
these two functions. 

From the definition it is 
clear that 1 < C  <rAv/rs. The shock-wave equations (2.2) evaluated at x 
yield 

or upon dividing by urs, 

From the quartic equation (2.15), it is clear that E = €(u,R). 

As a preliminary step, we find bounds for E. 

urN - Ar1i4 = urg + Ar;l4, 

( r d r , )  - 1 = .S[(rN/rsY4 + 11, (2.16) 

where us = (A/ci)ri3I4. As +--t 03, the shock strength as approaches zero, 
and it follows from (2.16) that rN/rs+ 1. By choosing rS sufficiently large, 
we can bring e as close to unity as we please. We may therefore set E = 1 + v, 
where v = v(rs) < 1 is as small as we please. 

The quantity v may now be evaluated by approximating the solution 
of the quartic (2.15). Saving terms up to O(v2) in the binomial expansion 
of d4, we find 

v = {R-1+u[1+O(v2)])(1-~u)-? (2.17) 

With (2.14) this becomes 

v = 2 4 1  -&,)-I+ O(uv2). (2.17 a) 

Equation (2.17 a) shows that v is of the order uf. By (2.10) or (2.11) it is 
clear that .$ = 0(1) ; hence we conclude that u is O(a). Upon saving terms 
of order u2 in (2.17 a), we have 

(2.18) 

Using (2.18) and expanding 

f = 2(u.$)1/2[1+ gu+~u[+O(u2)]. (2.19) 

A suitable expression for g is slightly more difficult to get. We proceed 

= 2 4  +to) + 0(~3). 

By definition, f = ( E ~ -  1)1/2 = ( 2 v + ~ ~ ) l / ~ .  
the square root, we find that 

as follows. Solve f = (e2- 1)lI2 for E, and obtain E = (f2+ l ) l I 2 .  Then 

g = log[€ + (€2- 1)1/2] = log[f+ ( j 2 +  1)””. (2.20) 

The expansion for (2.20) may be obtained in the form 

where 

m 

g = 2 b, f2,-’, 
1 

2.4.6 ...( 2n- 1) 1 ’ 1 . 3  .5...(2n - 3) 
b, = (-  1),-l 

(2.21 a) 

(2.21 b) 
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and f = (ez - 1) < 1.  This convergence conditions requires that E < V'2, 
which, from our discussion of (2.16) can always be fulfilled by making 1' 
large enough. 

Using (2.14), (2.19) and (2.21 a,b) in (2.12), we find after some 
manipulation 

6 = 2cr0312p(1 - $t) + 0 ( ~ 5 9 .  (2.22) 

Since u = ( A / M ) ~ - ~ / ~ ,  the product r2 i2  yields a term in r-li*. When 
transposed, this provides the Srl/s scaling law discovered empirically. 
Henceforth, we shall call the quantity r1/s(2C)-1A-3~2cx312 the ' scale factor ', 
and denote it by the letter G. Then (2.22) may be written" 

A = 1.2 
01 = 0.7 

Y = 50 

0 
0.290 
0.348 
0.349 
0.314 
0.251 
0.168 
0.065 

-0.056 
-0.192 
-0.340 

SG = [ll2((1 - $0, 

A(!$) 

-_ 
0 

0.274 
0.328 
0.329 
0.295 
0.236 
0.155 
0.056 

-0.060 
-0.190 
-0.333 

(2.23) 

___- 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0-9 
1 .o 

an expression which not only embodies the r1ls mapping law, but also 
exhibits the zero at = 0.75 already expected from the early investigation. 

0 
0.280 
0.335 
0.336 
0.303 
0.244 
0.164 
0.066 

-0.049 
-0.177 
-0.319 

I 6G I 

-- 
0 

0.276 
0.329 
0-331 
0.298 
0.239 
0.157 
0.059 

-0.056 
L0.186 
-0.329 

i I  A = 2 , o r = 2  

Y = 100 

0 
0.275 
0.329 
0-330 
0.296 
0.237 
0.156 
0.058 

-0.058 
-0.188 
-0.330 

Table 2. Scaled fringe shift calculated 

A = 2 , o r = 3  

T = 50 

0 
0.276 
0.330 
0.330 
0.298 
0.238 
0.157 
0.058 

-0.058 
-0'187 
-0.330 

Y = 100 

0 
0.275 

0.329 
0.299 
0.237 
0.156 
0.057 

- 

- 0.062 
-0.190 
-0.332 

'rom the exact form, equation (2.8). and - . -  . ,  
from the approximate form, h ( [ )  = !$lI2 (1 - +!$); G = ' scale factor '. 

We can get an idea of the amount of approximation involved in this 
equation by comparing values of 6G calculated from the exact fringe-shift 
expression (2.8) with values of h ( f )  = fl/z(l - $8). The comparison is 
made in table 2 for several combinations of r ,  A, and u. We notice that 
for constant A and M ,  the approximation improves as Y increases; and 
for constant r ,  as the ratio A/. decreases. This is consistent with the fact 
that the approximate form h( t )  is obtained by neglecting powers of the 
term u = (A/u)rr3i4. 

the approximation procedure. 
*The authors are indebted to Dr Raymond Sedney for helpful discussions of 
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For A ju < 1, the approximation is within 1 "/b of the exact value for all 
traces with r > 50 diameters. For A/. = 1.7 and r = 50, the approximation 
is within 6% of the exact value. 

Equation (2.23) shows that 6G is constant along curves where 
( = (x- xAv)/2Ar114 = const. ; or since 

along the lines 
x = ur +yo + Ar1i4(2< - 1). (2.24) 

This family of curves, shown schematically as dotted lines in figure 8, 
includes the shock waves (when < = O  and 1) and the straight characteristic 
x = ur+y, (when 

x,, = UT +yo - Ad4,  

= 0.5). 

Figure 8. Lines of constant 6G. 

Equation (2.23) gives a convenient test for the existence of N-wave flow 
no matter what the Mach number. The fringe shift S can be measured 
along a horizontal trace and multiplied by the scale factor. The existence 
of N-wave flow is established if this quantity, plotted against 8, lies closely 
along the curve h ( f )  = t1/2( 1 - ff). 

2.6. Application of theory to @ow around blunt bodies 
Since all of the theory described above is based upon an N-wave pressure 

expression derived from slender-body theory, one would naturally select 
a slender projectile in any attempt to substantiate the theory experimentally. 
However, stability considerations, to be discussed later, make the slender 
projectile impractical and require that a sphere be used in the investigation. 

From a theoretical standpoint it seems possible to use the disturbance 
from a sphere to verify the predicted N-wave fringe shift. Whitham (1950) 
shows that the pressure profile between the shocks far enough away from 
any supersonic body is linear, and that the pressure equation and the 
equation of the front shock take the form 

p - p ,  = yM2k-1(2u)-1/zr-1(x + h - ur), (2.29) 

and x = o(r - br1i4 - h, (2.30) 

respectively, where b and h are constants depending on body shape. These 
equations are of the same form as (2.2) and (2.3), which resulted from 
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slender-body theory. Although b and h depend upon the body shape, 
they are not explicitly set out in terms of body shape ; whereas the constants 
A and yo of (2.2) and (2.3) are. We infer, therefore, as Lighthill (1954) 
has done, that equations (2.2) and (2.3) from Whitham’s slender-body 
theory apply to the disturbance sufficiently far from the axis of any supersonic 
projectile, provided that the constants A and yo are evaluated empirically 
from the shock wave positions and other data. 

3. EXPERIMENTAL PROCEDURE 

3.1. Theory of the experiments 
The experimental investigation is designed (1) to test the validity of 

the fringe-shift equation (2.8) between the shock waves, (2) to determine 
how near to the projectile axis the conditions characteristic of an ideal 
N-wave may be observed, and (3) to determine how near the axis the actual 
shock waves lie along the lines described by (2.2). 

The first studies were made of the flow around a 0.225 in. cone-cylinder 
in a region about 15 projectile diameters from the axis (see first footnote 
of $2.5). The fringe shift was much greater than that predicted for the 
ideal N-wave, and, in order to ,observe the flow further from the axis, it 
became necessary to use projectiles of smaller diameter. Final results 
were obtained with a -ib in. diameter sphere, which permitted observations 
to be made at distances up to 70 diameters. 

To  substantiate the fringe-shift equation, the actual fringe shift is 
measured along a horizontal trace, multiplied by the scale factor, and 
compared with the function h(c) = Ellz( 1 - $6). 

The scale factor is a function of C, a, and r ;  however, since the 
disturbance is caused by a blunt body, A cannot be calculated from the 
body shape, but must be determined from measurements of the shock wave 
positions with the help of the definition A = (xs - xx)/2r1I4. The reliability 
of this method is tested by measuring the shock positions from a *in. 
diameter sphere. Average values of A and yo are calculated from these 
positions and are used with (2.2) to plot the theoretical N-wave shock 
positions. These are compared with the measured positions. 

From a theoretical point of view it would have been desirable to compare 
the measured shock positions of a projectile of known velocity and line of 
flight with the positions predicted by the shock equations (2.2). Actually 
it is impractical to determine the line of flight accurately in the free flight 
range. In order to fix the axis in an interferogram, the existence of the 
straight characteristic, x = ar +yv, lying halfway between the shocks, is 
assumed. The picture is adjusted until the slope of this line corresponds 
to the a calculated from velocity measurements. Our method for verifying 
the N-wave shock equations is thus a semi-empirical one. 

3.2. Apparatus and instrumentation 
To obtain quantitative data the projectiles were fired from a calibre 

0-22 rifle approximately along the axis of the Controlled Temperature- 
Pressure Range of the Air Flow Branch, Exterior Ballistics Laboratory. 
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The flow was observed through optical glass windows at the interferometer 
station of the range by a Mach-Zehnder interferometer with an 8 in. x 10 in. 
working field. (For a detailed discussion of this type of instrument, see 
Ladenburg & Bershader 1954.) 

In order to record the disturbance as far from the axis of the projectile 
as possible, the rifle was aimed to place the projectile near the edge of the 
interferogram. 

The light source employed at the interferometer is an exploding wire 
with a duration of about 3 microseconds (Lewis & Sleator 1956). Since 
the projectiles travelled about 1.5 mm during this time, their images were 
stopped on the film with a rotating mirror (Bergdolt et a / .  1951). A band 
of light about 20 a wide centred at the 4358 A mercury line is isolated from 
the continuous spectrum of the exploding wire by a slit and a carbon 
disulphide liquid-filled prism (Sleator et al. 1952). 

The projectile velocity is measured between a pair of stations 16.89 ft. 
apart served by 0.1 megacycle chronograph counters triggered by impulses 
from photo-cells which respond to fluctuations in light screens through 
which the missile passes. The impulse from the down-range station also 
triggers a delay circuit, which fires the exploding wire of the interferometer 
station at the proper time. 

The interferograms are measured with a Telereader-Telecordex 
combination. The Telereader projects a magnified image of the interfero- 
gram on a screen; horizontal and vertical cross hairs can be moved 
independently across the screen to measure distances in the r and x directions 
respectively. The distances moved by the cross hairs are displayed by the 
counters of the Telecordex and can be permanently recorded with an 
automatic typewriter. If the counters are zeroed when the cross hairs are 
at one point of the interferogram (for example, at the nose of the projectile), 
the coordinates of any other point are measured by moving the cross hairs 
to that point. The measurement is accurate to within two Telereader units. 

3.3. The slender cone-cylinder 
A cylinder of 0.225 in. diameter with a conical tip of 20" included angle 

was initially selected for this investigation. This projectile is stable in 
flight when fired with small initial yaw and high spin (cf. McShane et al. 
1953), and it is just slender enough to meet the requirements of slender-body 
theory. A comparison of the results of Whitham's theory and the exact 
adiabatic theory of flow past a cone shows reasonably good agreement for 
included cone angles up to 20". 

The cylindrical portion of the projectile was made slightly oversize and 
was used as the rotating band in order to reduce the shock waves which attach 
themselves to the forward edge of a conventional rotating band. Even so, 
compression waves are propagated from the grooves engraved on the 
cylinder. 

An interferogram (figure 9, plate 2) was taken of the flow around the 
projectile at a Mach number of 2-25. Fringe-shift measurements taken at 

Fringes were adjusted to lie parallel to the trajectory. 
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distances from the axis up to about 13 diameters indicated that the ideal 
N-wave had not formed within the field of view. The results of these 
measurements are reported in a later section only as a qualitative comparison 
with results obtained with spheres. 

T o  observe the flow still farther away from the projectile axis, un- 
successful attempts were made to launch 0.1 in. diameter cone-cylinders. 
Sub-calibre projectiles such as these are made to fit the rifle bore by encase- 
ment in a plastic holder, called a sabot, which separates from the projectile 
after leaving the muzzle of the rifle. Difficulties arise because during 
separation the sabot imparts a certain amount of angular momentum and 
initial yaw to the projectile, and causes a body of borderline stability (such 
as the 20" cone-cylinder) to yaw violently or tumble in flight. It was therefore 
necessary to use a more stable projectile than the cone-cylinder. The 
sphere is a practical choice. It is stable, easily saboted, and can be readily 
obtained in almost any size. 

3.4. The spheres 

The spheres used were standard steel balls with diameters of $ in. and 
& in. Since these were sub-calibre projectiles, sabots were necessary. 
The sabots were plastic cylinders 0.4 in. long and 0.225 in. in diameter 
whose forward faces were hollowed as inverted cones; the spheres were 
placed in shallow holes drilled at the apex of the cones. 

An interferogram was taken of the flow around a Q in. diameter sphere 
(figure 10, plate 3) at a Mach number of 1.35. Shock-wave measurements 
from this interferogram are compared with the ideal N-wave shock equations 
(2.2) in 5 4.2. Fringe-shift measurements, made at distances from the axis 
up to 40 diameters, indicated the need for a still smaller projectile. 

The small size 
of this projectile presented two technical difficulties. (1) The muzzle 
velocity was somewhat unpredictable with the result that the delay set into 
the station circuits before a round was fired was not always compatible 
with the velocity attained. (2) The intensity of the light falling on the 
photocells at the velocity stations was frequently not influenced enough 
by the passing projectile to trigger the velocity counters. It was necessary, 
therefore, to fire many rounds to get two usable interferograms. For one 
of these interferograms the velocity of the round was measured, and the 
shock positions are clearly defined, but the quality of the fringes is too poor 
to allow accurate fringe-shift measurement. On the other hand, the fringes 
in the other are distinct and measurable, but the velocity was not obtained. 
No change was made in the inclination of the fringes nor in the gun position 
between the firing of these two rounds. Thus the inclination of the axis 
of flight with the fringes is presumably the same in both interferograms. 
Fringe-shift measurements are made on the interferogram shown in 
figure 11 (plate 4). The projectile axis is determined in conjunction with 
the interferogram for which the velocity is known. 

Final firings were conducted with the & in. sphere. 
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4. INTERFEROGRAM MEASUREMENT AND CALCULATIONS 

4.1. Summary of the data 

Items 
1 to 8 list data measured in the laboratory at the time of firing. The air 
density, item 9, is determined from appropriate handbook tables using the 
measured values of temperature, pressure and humidity. The projectile 
velocity and Mach number, items 10 and 11, are calculated quantities; a 
discussion of velocity calculation for spheres is given in Appendix 11. 
The quantity a is calculated from the Mach number for the projectile of 
figure lO(p1ate 3) ; for the in. sphere of figure 11 (plate 4), a is the measured 
slope of the straight characteristic. The constants A and yo,  items 13 and 
14, are calculated from shock-position measurements in a manner described 
in the next paragraph. T o  determine the undisturbed fringe spacing A, 
the distances between adjacent fringes are measured in the undisturbed 
region in front of the shock wave ; A is an average of these measurements. 

For those quantities which are used in a quantitative comparison with 
theory, table 3 gives the estimated error in the quantity. Where the datum 
is the average of a number of measurements or calculations (items 13, 14 
and 15), the estimated error is given in the form of a standard deviation. 

Table 3 gives a summary of measured and calculated data. 

4.2. Verz$cation of the shock positions 
Before any measurements of the interferogram can be made, the picture 

must be oriented on the Telereader so that the origin of the coordinate 
system lies at the nose of the projectile and the x-axis along the axis of 
flight. Although this axis is not known, the velocity (and therefore x )  
has been measured. If the slope of the straight line running midway 
between the shocks is made to have the value cc by adjusting the picture 
of the Telereader, then the x-axis of the Telereader will lie along the 
projectile axis. 

The interferogram is initially placed in an arbitrary position on the 
Telereader. For some value of I, x, and x, are measured and xo calculated 
from xo = +(xs + x N )  ; for another value of r ,  another xo is determined in 
the same way. Now the coordinates of two points are known, and both 
points should lie on the line x = tcr +yo  if the interferogram is properly 
oriented. Therefore, the slope of the line between the two points is 
calculated, and compared with the value of a calculated from the known 
velocity. If there is a discrepancy, the picture is rotated on the Telereader, 
and the same procedure is repeated. When the slope of the straight 
characteristic and a are as near to the same value as the Telereader 
adjustment will allow, then the x-axis is presumed to lie along the projectile 
axis. 

Now the coordinates of the shock waves (xAv, r )  and (xs, r )  are measured 
for many values of r .  For each value of r we calculate (1) the point (xo, Y )  

on the straight characteristic from the relation xo = =!j(xaV + xs) ; (2) yo  from 
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yo =20- -ur ;  (3) A from A = ( ~ ~ - x ~ ) / 2 r l / ~ .  We obtain an average A" 
and y o .  Through a plot of the points (x,,,~) a straight line is drawn, and 
the slope of this line is compared with u to make sure that any difference 
between them is less than the standard deviation of the u's found by taking 
numerous pairs of points from the set which determines the line. 

D. H.  Steininger and F. D. Bennett 

Figure 12. Shock positions, in. sphere. 

Distance, x diam 
Figure 13. Shock positions, cone-cylinder. 
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Now the values yo, 2, and or are used in the shock equations - - .  
x, = ar +yo - Ar1j4, x, = ar +yo + Ar1l4. 

For each value of r for which measurements were obtained, xN and x, are 
calculated. We compare calculated x,, x, with measured x,, xs for the 
Q in. sphere in table 4. Figures 12 and 13 show the measured and calculated 
shock positions for the sphere and the cone-cylinder respectively. 

Y 

2.230 
3.676 
4.916 
6.276 
7.71 1 
9.626 

11 a062 
12.552 
14.053 
15.532 
16.925 
18.415 
19,948 
21.384 
22-874 
24.723 
26.214 
28-030 
29.520 
31.141 
32.707 
34.350 
35.851 
37.014 
38-135 
39.821 

Measured xAT 

0.7831 
1.719 
2.610 
3.666 
4.829 
6.385 
7-527 
8.789 

10.029 
13.225 
12.411 
1 3.694 
15.010 
16.316 
17.621 
19.154 
20.481 
22.167 
23407 
24.854 
26.246 
27.562 
29.020 
30.010 
30.934 
32.522 

Zalculated xAT 
(N-wave) 

0.364 
1.416 
2-377 
3.463 
4.634 
6.223 
7.430 
8.691 
9.971 

11.237 
12.436 
13.723 
15.051 
16.298 
17.596 
19.218 
20.514 
22.106 
23.414 
24.839 
26.218 
27.666 
28.991 
30.018 
3 1 -009 
32.500 

Measured xs 

4.721 
6.222 
7.451 
8.789 

10.203 
12.041 
13.433 
14.793 
16.239 
17.686 
18.991 
20.460 
21 $928 
23.233 
24.626 
26.355 
27.802 
29.629 
30.999 
32.555 
34-034 
35.503 
36.938 
38.015 
39.146 
40.767 

Calculated xs 
(N-wave) 

4.332 
5.912 
7.211 
8.601 

10.044 
11 ~941 
13.350 
14.803 
16.257 
17.683 
19.022 
20.449 
21 ,913 
23.280 
24.696 
26.458 
27.860 
29.576 
30-982 
32.509 
33.982 
35.526 
36.935 
38.026 
39-077 
40.656 

Table 4. Comparison of N-wave shocks with actual shock positions for in. sphere. 
All units are in projectile diameters. 

4.3. Fringe-shift measurement, & in. sphere 
The interferogram (figure 11, plate 4) is oriented on the Telereader 

so that the x-axis of the coordinate system is along the projectile axis and 
the shock positions are measured according to the procedure of $4.2. The 
slope of the straight line through the points (x,,,~) is used to obtain a. 
Actually, the drag on the & in. sphere is so great that the effective Mach 
number along the length of the shock waves is not constant, and three 
values of a are determined: one for the upper third of the shock wave 
region (this value, a = 0-810, is given in table 3) ,  one for the middle third, 
a = 0.800, and one for the lower third where a = 0.786. 

Q 2  
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To interpret the interferogram the fringe shift 6 is measured along the 
path traced by a fringe between the shock waves. If r is the radial distance 
to the disturbed fringe at a certain point ( x , r )  and r, the distance to the 
same fringe in the undisturbed region in front of the shock, then 6 = ( r  - rJA,  
where A is the distance between the undisturbed fringes. The coordinates 
(x, r )  along the fringe are measured for at least six values of x ranging from 
the front to the rear shock. For each value of x, six separate measurements 
are taken of the radial distance and averaged for r.  Then 6 is calculated at 
each point and multiplied by the scale factor. 

s J 

Figure 14. Correction of fringe-shift measurement. 

The theory with which we wish to compare these measurements predicts 
fringe shift along a horizontal trace, not along a fringe ; so we correct our 
measurements appropriately. It was shown in $2.5 that 6G is constant 
along the lines 

The slope of these lines deviates from E by an amount that ranges from 
Ar3/4 at the shocks to zero midway between the shocks where ( = 0.5. 
For large r ,  Ar-3/4 is small compared with E,  and to a good approximation 
6G is constant along lines of slope M. We therefore move the measured 6G 
at some point on the fringe, say A(x,r)  in figure 14, along a line of slope a 
to a new point, say B(x’, ru), on the horizontal trace. By this construction, 
x‘ = x - m(r - r,). The value of 5‘ corresponding to the 6G measured at A 
is then ( = (x ’ -xN) / (xs -xN) .  The change in r1i8 of the scale factor due 
to  the move from point A to point B is less than 0.1 ?(, for r > 70 diameters, 
and is neglected. Six separate measurements were taken of the distance 
between the shock waves (x, - xN),  and their average was used in the calculation 
of (. The value of A used in the scale factor is an average value determined 
from the shock wave positions in the manner described in $4.2. 

The results of these fringe-shift measurements for several traces through 
the shock waves are given in figures 15 to 19, where 6G is plotted against ( 
and compared with the curve h(()  = (li2(l - $(). 

= +yo + ~ ~ 1 / 4 ( 2 f  - 1). 
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Sphere 

r = 74.24 diam. 

- -.I0 - _ _ _ _  Exact Theory ( Eq.2-8) 

- h(E1.K ( I - $ € )  

,+ Error estimate 

60 

Measurement ( average value) -.20- 

-.30 - 
Figure 15. Fringe shift between the shocks, 

Sphere 
~ 6 7 . 3 1  diam. 

-$-----t 
.2 .3 

--c------l 
.9 1.0 

Figure 16. Fringe shift between the shocks. 
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0 0  
0 

I =  32.02 dicrn. 

0 
0 

0 
ln - h ( E )  

o Measurement 

v . -.lo- 
M 

- 2 0 -  

-.30- 

Figure 17. Fringe shift between the shocks. 

0 

0 
0 

Sphere 

r =  8.03 diam. 

Figure 18. Fringe shift between the shocks. 
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0 

0 0 

- a 0  

Y - J O  
m 

0 
0 
v) 

Sphere 

r =  2.94 diam. 

4 
.'I .i .3 .4 .5 .6 0.7 .8 .9 1.0 

- - h ( € 1  
Measurement 

23 1 

\- 
730 -'T 

O\ 

Figure 19. Fringe shift between the shocks. 

Cone- cyl 

r =  12.92 diam. 

2 0  I I \ ,  4 
CI- .I .2 .3 .4 .5 .6 .7 \8 .9 1.0 

Y - h ( € 1  
Measurement 

\- 
'9 

Figure 20. Fringe shift between the shocks. 
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4.4. Fringe-shift measurements, cone-cylinder 

as that of the sphere. 

D. H.  Steininger and F. D. Bennett 

The interferogram of figure 9 (plate 2) was measured in the same manner 
The results are shown in figures 20 and 21. 

0 

Cone- cy l  

r= 4.5 diam 

0 
v) 
Y 

-.lo- _. h(( )  
o Measurement 

-.20 - 

-.30 - 
0 

Figure 21. Fringe shift between the shocks. 

5. DISCUSSION OF RESULTS AND CONCLUSIONS 

5.1. Shock positions 

Table 4 compares the actual shock positions for the 4 in. sphere with 
the shock positions predicted for the N-wave by (2.2). Figure 12 presents 
this comparison pictorially. The calculated points plot a smooth curve, 
but the measured points have a randomness due to errors in the measure- 
ments. At small r ,  the measured points of the shocks fall well outside the 
N-wave curves of (2.2). For r > 15 diameters, the measured points fall 
randomly on either side of the N-wave curves and within & of a diameter 
from them, which is estimated to be within the probable error of the 
measurements. 

We assume the validity of (2.2) in order to determine the axis of the 
projectile and to measure the constants 2 and yo. We now conclude that 
this assumption is correct, and that the actual shock waves follow the curves 
given by (2.2) for all r > 15 diameters. 

Whitham (1952) has interpreted the experimental results of DuMond 
et al. (1946) as showing that the shock waves follow the curves of (2.2) for 
I > 1000 diameters. The results given here indicate that good agreement 
is obtained closer to the projectile axis by a factox of 60. 
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A similar comparison of actual and N-wave shock positions for the 
slender cone-cylinder is shown in figure 13. For this projectile the curves 
coincide for r > 7 diameters. 

5.2. Fringe shift in the N-wave 
Figures 15 to 19 show the results of the fringe-shift measurements along 

several traces of constant r,  and compare these results with the fringe shift 
predicted by the theory as represented by the curve h(e) = f1I2(1 - + f ) .  
For small r, the measured data lie well above h(f) near the front shock and 
below h(6) near the rear shock. We attribute this to the fact that in the 
near regions where the ideal N-wave has not yet formed, the pressure 
profile between the shocks lies above a linear profile near the front shock 
and below near the rear shock (see figure 3). As Y increases, the measured 
fringe-shift curve moves closer to h(f). At r = 74 diameters, the measured 
data fall very close to the exact theoretical curve of (2.8) (as represented by 
the dashed line of figure 15). The circles plotted in figure 15 are the average 
values of the measurements. The lengths of vertical arrows through these 
circles represent the composite estimated errors in the fringe-shift measure- 
ments.and in the determination of the scale factor. The horizontal arrows 
show the estimated error in f .  A detailed error estimate is given elsewhere 
(Steininger 1956). 

We notice that for r = 74 and r = 67, in the region where fringe shift 
all along the trace is rather small, the data points just behind the front shock 
fall below the theoretical curve. In the near regions of both cone-cylinder 
and sphere within 10 to 15 diameters of the axis, the data points do not fall 
below the theory. However, in determining the value of f for each fringe- 
shift measurement (see $4.3), we moved the value of fringe shift down a 
line of slope a to the horizontal trace, whereas to be completely accurate 
we should have moved down a line of steeper slope. This means that a 
more accurate plotting of the data would move the points near the front 
shock wave to the right and hence below the theoretical curve. This 
correction would increase with increasing fringe shift since it is proportional 
to r - ru, and with decreasing Y since it is proportional to Ar3I4. An analysis 
of the errors involved in the measurements does not indicate the possibility 
of these low points. Therefore we must look for a physical basis for the 
discrepancy. A possible explanation is that refraction effects immediately 
behind the shock front displace the fringes slightly downward and result 
in a smaller fringe shift. Bennett et al. (1952) give evidence that fringe- 
shift data near the shock usually lie below expected values. More recent 
unpublished investigations indicate that refraction could cause measured 
values to lie either below or above expected values depending upon which 
side of the focal plane the projectile lies. The position of our projectile 
with respect to the focal plane is not known, so we cannot come to a definite 
conclusion about the effects of refraction in our particular case. 

We conclude that (1) equation (2.8) does predict the fringe shift in the 
region between the shocks where the pressure profile is linear, (2) the 
approximate function h(f) = f1I2(1 - $$) can be used as a test for the 
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existence of N-wave flow, and (3) for the sphere, N-wave flow exists for r 
greater than about 70 diameters. We note in passing that the shock waves 
assume their asymptotic shapes much closer to the projectile axis than the 
pressure profile does. 

The results of fringe-shift measurements for the cone-cylinder are 
presented in figures 20 and 21 for qualitative comparison with the results 
for the sphere. We see that as r increases, the peak value of the measured 
fringe shift moves away from the theoretical curve, giving evidence that the 
actual fringe shifts, and consequently the pressures in this region, are 
dissipating less rapidly than an N-wave pressure distribution which the 
theory represents. Whitham (1952) shows that 
the pressure curve Wh(71), if it applied at small r ,  would become infinite 
at r = 0, and that the shock strength at large Y, Wh(44), decreases at a rate 
proportional to r-3/4. It seems reasonable that, in the case of the cone- 
cylinder where the conical region of compressive flow extends far up the 
front shock wave, the actual pressure, although having a finite value at 
r = 0, dissipates much less rapidly at small values of r than the N-wave 
pressure would. 

In  contrast, we notice that for the sphere where the flow is compressed 
at the front and then expands continuously around the body, the measured 
fringe shift converges upon the theoretical curve even in the relatively 
near regions. 

This is to be expected. 

APPENDIX I. INTERSECTIONS OF THE FUNCTIONS f AND Rg 
From 8 2.4, 

,f = (€2 - 1)1'2 

g = log[€ + (€2- 1)1/2]. and 

The functions f and Rg intersect when 
(e2 - 1)1/2 = Rlog[E + (e2 - 1)lI2] 

or 

Let 6 = (e2 - 1)lI2/R. 

and 

exp[(E2 - 1)1/2/R] = E + (e2 - l)li2. 
Then 

ee = E + (.2 - 1 1/2 1 )  
e-e  = [E + (€2 - 1)m-l = E - (€2 - 1)1/2. 

Now 

so sinh0 = RO. 
Figure 22 shows the relationship of the functions sinh0 and R6. 
function sinh 0, 

d 
d6 ' - (sinh 0) >, 1 for 0 3 0. 

For the function RO, 
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In these two cases, the only intersection of R8 with sinhe occurs at 
8 = 0 (c = 1). When R > 1 ,  

and R8 and sinh 6' intersect twice, once at 6' = 0 and once for 6' > 0 (c > 1). 

t 

Figure 22. Relationship of the functions sinh 6 and Re. 

APPENDIX II. VELOCITY CALCULATION FOR SPHERES 

The equation of motion for any non-yawing projectile in free flight can 
be written 

dV 
dz 
- = -KBFoV, (11 .1)  

where V is the velocity of the projectile, and KD the ballistic coefficient; 
also F,, = po d2/m, where po is the air density, d the diameter of the projectile, 
and m the mass of the projectile. From the work of Charters & Thomas 
(1945), for spheres, 

KD = (0.3812 & 0.0006) - (0.0140 & O*OOOS)( V / C -  2-75), 
or in general terms KD = a(1 -bV), (11.2) 
where a = 0.4197 and b is a constant which depends on the sound velocity. 

Equation (11.1) now becomes 

= - F o a V ( l - b V ) ,  
dx 

which can be integrated to give 

(11 .3 )  

V 
= V ,  exp( - Fa az) .  

1-bV 
(11.4) 
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We replace V by dz/dt ,  integrate again and find that 
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exp(*oaz) +bV,x = V,t+C,  
FO a 

(11.5) 

where C is the second constant of integration. 
For the sphere shown in figure 10 (plate 3)) the time t ,  required to 

traverse a distance z, between the two velocity stations of the range was 
measured. We evaluate the constant C in (11.5) from the initial condition 
that when t = 0, x = 0, and the constant V,  from the final condition that 
when t = t,, z = x,. 

Now the distance zz from the first velocity station to the interferometer 
is measured, and from (11.4) the value of Vat the interferometer is determined 
thus 

(11.6) = V, exp( - F, axz). 
V 

1-bV 
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